Radiation-dominated Disks Are Thermally Stable

نویسندگان

  • Shigenobu Hirose
  • Julian H. Krolik
  • Omer Blaes
چکیده

When the accretion rate is more than a small fraction of Eddington, the inner regions of accretion disks around black holes are expected to be radiation-dominated. However, in the α-model, these regions are also expected to be thermally unstable. In this paper, we report two 3-d radiation MHD simulations of a vertically-stratified shearing box in which the ratio of radiation to gas pressure is ∼ 10, and yet no thermal runaway occurs over a timespan ≃ 40 cooling times. Where the time-averaged dissipation rate is greater than the critical dissipation rate that creates hydrostatic equilibrium by diffusive radiation flux, the time-averaged radiation flux is held to the critical value, with the excess dissipated energy transported by radiative advection. Although the stress and total pressure are well-correlated as predicted by the α-model, we show that stress fluctuations precede pressure fluctuations, contrary to the usual supposition that the pressure controls the saturation level of the magnetic energy. This fact explains the thermal stability. Using a simple toy-model, we show that independently-generated magnetic fluctuations can drive radiation pressure fluctuations, creating a correlation between the two while maintaining thermal stability. Subject headings: accretion, accretion disks — instabilities — MHD — radiative transfer

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Thermal Instability Criterion of Black Hole Accretion Disks

The conventional thermal instability criterion can not be applied to the advectiondominated accretion disks around black holes where the radiative cooling is insufficient to balance the viscous heating. The surface density change associated with the temperature perturbations, which was usually neglected in deriving the conventional criterion, was recently shown to be much significant in the adv...

متن کامل

Thermal Equilibria of Accretion Disks

We show that most of hot, optically thin accretion disk models which ignore advective cooling are not self-consistent. We have found new types of optically thin disk solutions where cooling is dominated by radial advection of heat. These new solutions are thermally and viscously stable. Subject headings: accretion, accretion disks | instabilities

متن کامل

On the Relative Surface Density Change of Thermally Unstable Accretion Disks

The relations among the relative changes of surface density, temperature, disk height, and vertically integrated pressure in three kinds of thermally unstable accretion disks are quantitatively investigated, assuming local perturbations. The surface density change is found to be very small in the long perturbation wavelength case but cannot be ignored in the short-wavelength case. It becomes si...

متن کامل

Two-dimensional Hydrodynamic Simulations of Convection in Radiation-dominated Accretion Disks

The standard equilibrium for radiation-dominated accretion disks has long been known to be viscously, thermally, and convectively unstable, but the nonlinear development of these instabilities—hence the actual state of such disks—has not yet been identified. By performing local two-dimensional hydrodynamic simulations of disks, we demonstrate that convective motions can release heat sufficientl...

متن کامل

Viscous Stability of Relativistic Keplerian Accretion Disks

We investigate the viscous stability of thin, Keplerian accretion disks in regions where general relativistic (GR) effects are essential. For gas pressure dominated (GPD) disks, we show that the Newtonian conclusion that such disks are viscously stable is reversed by GR modifications in the behaviors of viscous stress and surface density over a significantly large annular region not far from th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008